229,593 research outputs found

    Berry Phase in Cuprate Superconductors

    Full text link
    Geometrical Berry phase is recognized as having profound implications for the properties of electronic systems. Over the last decade, Berry phase has been essential to our understanding of new materials, including graphene and topological insulators. The Berry phase can be accessed via its contribution to the phase mismatch in quantum oscillation experiments, where electrons accumulate a phase as they traverse closed cyclotron orbits in momentum space. The high-temperature cuprate superconductors are a class of materials where the Berry phase is thus far unknown despite the large body of existing quantum oscillations data. In this report we present a systematic Berry phase analysis of Shubnikov - de Haas measurements on the hole-doped cuprates YBa2_2Cu3_3Oy_{y}, YBa2_2Cu4_4O8_8, HgBa2_2CuO4+δ_{4 + \delta}, and the electron-doped cuprate Nd2−x_{2-x}Cex_xCuO4_4. For the hole-doped materials, a trivial Berry phase of 0 mod 2π2\pi is systematically observed whereas the electron-doped Nd2−x_{2-x}Cex_xCuO4_4 exhibits a significant non-zero Berry phase. These observations set constraints on the nature of the high-field normal state of the cuprates and points towards contrasting behaviour between hole-doped and electron-doped materials. We discuss this difference in light of recent developments related to charge density-wave and broken time-reversal symmetry states.Comment: new version with added supplementary informatio

    Possible Z2 phase and spin-charge separation in electron doped cuprate superconductors

    Full text link
    The SU(2) slave-boson mean-field theory for the tt'J model is analyzed. The role of next-nearest-neighbor hopping t' on the phase-diagram is studied. We find a pseudogap phase in hole-doped materials (where t'<0). The pseudo-gap phase is a U(1) spin liquid (the staggered-flux phase) with a U(1) gauge interaction and no fractionalization. This agrees with experiments on hole doped samples. The same calculation also indicates that a positive t' favors a Z2 state with true spin-charge separation. The Z2 state that exists when t' > 0.5J can be a candidate for the pseudo-gap phase of electron-doped cuprates (if such a phase exists). The experimental situation in electron-doped materials is also addressed.Comment: 6 pages, 2 figures, RevTeX4. Homepage http://dao.mit.edu/~wen

    Strength of Correlations in electron and hole doped cuprates

    Full text link
    High temperature superconductivity was achieved by introducing holes in a parent compound consisting of copper oxide layers separated by spacer layers. It is possible to dope some of the parent compounds with electrons, and their physical properties are bearing some similarities but also significant differences from the hole doped counterparts. Here, we use a recently developed first principles method, to study the electron doped cuprates and elucidate the deep physical reasons why their behavior is so different than the hole doped materials. We find that electron doped compounds are Slater insulators, e.g. a material where the insulating behavior is the result of the presence of magnetic long range order. This is in sharp contrast with the hole doped materials, where the parent compound is a Mott charge transfer insulator, namely a material which is insulating due to the strong electronic correlations but not due to the magnetic order.Comment: submitted to Nature Physic

    Theory of non-Fermi liquid and pairing in electron-doped cuprates

    Full text link
    We apply the spin-fermion model to study the normal state and pairing instability in electron-doped cuprates near the antiferromagnetic QCP. Peculiar frequency dependencies of the normal state properties are shown to emerge from the self-consistent equations on the fermionic and bosonic self-energies, and are in agreement with experimentally observed ones. We argue that the pairing instability is in the dx2−y2d_{x^{2}-y^{2}} channel, as in hole-doped cuprates, but theoretical TcT_{c} is much lower than in the hole-doped case. For the same hopping integrals and the interaction strength as in hole-doped materials, we obtain Tc∼10T_{c}\sim10K at the end point of the antiferromagnetic phase. We argue that a strong reduction of TcT_{c} in electron-doped cuprates compared to hole-doped ones is due to critical role of the Fermi surface curvature for electron-doped materials. The dx2−y2d_{x^{2}-y^{2}}-pairing gap Δ(k,ω)\Delta(\mathbf{k},\omega) is strongly non-monotonic along the Fermi surface. The position of the gap maxima, however, does not coincide with the hot spots, as the non-monotonic dx2−y2d_{x^{2}-y^{2}} gap persists even at doping when the hot spots merge on the Brillouin zone diagonals.Comment: 16 page

    On the optical conductivity of Electron-Doped Cuprates I: Mott Physics

    Full text link
    The doping and temperature dependent conductivity of electron-doped cuprates is analysed. The variation of kinetic energy with doping is shown to imply that the materials are approximately as strongly correlated as the hole-doped materials. The optical spectrum is fit to a quasiparticle scattering model; while the model fits the optical data well, gross inconsistencies with photoemission data are found, implying the presence of a large, strongly doping dependent Landau parameter

    Cholesteric aggregation at the quinoidal-to-diradical border enabled stable n-doped conductor

    Get PDF
    Resumen de la comunicaciĂłnSemiconductor materials constitute the heart of solar cells since they are responsible of the photovoltaic effect. For this reason, the search of new materials to improve the efficiency and stability of these devices is on the focus of the organic electronics. These semiconductors are typically formed by p-doped materials. Despite the relative high abundance of molecules suitable for photovoltaic purposes, that is, able of absorbing light and allowing the transport of the new created charges through them, n-doped organic semiconductors are not plentiful due to their well-known ambient instability.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tec

    Double tungstate lasers: From bulk toward on-chip integrated waveguide devices

    Get PDF
    It has been recognized that the monoclinic double tungstates KY(WO4)2KY{(WO_4)}_2, KGd(WO4)2KGd{(WO_4)}_2, and KLu(WO4)2KLu{(WO_4)}_2 possess a high potential as rare-earth-ion-doped solid-state laser materials, partly due to the high absorption and emission cross sections of rare-earth ions when doped into these materials. Besides, their high refractive indexes make these materials potentially suitable for applications that require optical gain and high power in integrated optics, with rather high integration density. We review the recent advances in the field of bulk lasers in these materials and present our work toward the demonstration of waveguide lasers and their integration with other optical structures on a chip
    • …
    corecore